2 research outputs found

    Overview of 802.11 Power Saving Mechanisms

    Get PDF
    This paper presents overview of 802.11 power saving mechanisms with priority to Distributed Coordination Function (DCF). In the 802.11 power saving mechanism, time is divided into beacon intervals. When each beacon interval starts, each node periodically wakes up for a time period called ATIM window. Synchronization is required between nodes so that they remain active at the same time. During ATIM window, nodes exchange control packets to determine whether they need to remain active for the rest of the beacon interval. The size of the ATIM window has a major marked effect on energy savings and throughput achieved by nodes. In the mechanism, the nodes that are involved in the data communication remain active and other nodes go into doze mode

    CROSS LAYER DESIGN FOR WIRELESS LOCAL AREA NETWORKS (802.11)

    No full text
    Wireless local area Networks (WLAN) have grown to become a really engaging answer to supply network connectivity, providing user quality, flexibility and simple deployment at a comparatively low cost. The recognition and, therefore, the traffic load of WLANs grows furthermore because the necessity to support real-time delay-sensitive applications like voice, video streaming or online gaming. Therefore, the requirement for higher efficiency and Quality of Service (QoS) guarantees becomes necessary
    corecore